CSC 471 midterm 1 - Spring 2017

Name:

READ ME FIRST

- Work individually! You may use a calculator
- Don't spend too much time on any one problem. This exam should take 80 minutes.
- Be neat
- Show how you got your answers!
- When in doubt, write down your assumptions
- You are allowed to use a calculator

1	15 pts	Short answer	
2	10 pts	Vectors	
extra credit	2 pts		
3	30 pts	2 D transform matrices	
4	15 pts	Transforms	
5	20 pts	More Transforms	
6	10 pts	Rasterization	
	100 pts	Grand total	

1) Short answer/ true \& false questions (20 pts)

a) (1 pt) In a very general sense, the GPU can be viewed as a SIMD machine that allows a program to run the same 'vertex shader' program on multiple different vertices in parallel and then run a 'fragment shader' program on multiple fragments in parallel, thus speeding up the process of rendering computer graphics
True
False
(b-f) Refer to the following figure and fill in the missing information - short answers (2 pts each):
(b) Describe what data is typically
transferred from the CPU to the GPU
for graphics applications:
g) (4 pts) Assume in your game the circle defined by:
$f(x, y)=\left(\begin{array}{ll}x & x_{c}\end{array}\right)^{2}+\left(\begin{array}{ll}y & y_{c}\end{array}\right)^{2} \quad r^{2}$
with $\{\mathrm{xc}, \mathrm{yc}\}=\{-1,5\}$ and a radius of 2.5 , is shielded from the highly contagious zombie virus. If you place your trusty steed at point $\{1,6\}$ are they safe from contamination? (show your work with math):

2) Vectors ($\mathbf{1 0}$ pts)

Given the following vectors: $\mathbf{v}^{\mathrm{T}}=[7,9,3]$ and $\mathbf{u}^{\mathrm{T}}=[7,11,3] \quad$ Compute:

1) $(\mathbf{2} p t s) \mathbf{v}+\mathbf{u}=$
2) $(\mathbf{2} \mathbf{p t s}) \mathbf{v} \cdot \mathbf{u}=$
3) $(\mathbf{2} \mathbf{p t s})$ If $\mathbf{w}=\mathbf{v}-\mathbf{u}$, What is the length of the vector \mathbf{w} ?
4) (4 pts) Write the normalized form of \mathbf{w} (from the part 3) (i.e. write \mathbf{w} as a unit length vector).
5) (2 pt extra credit): draw the vector $-1 * \mathbf{w}$ (accurately depicting length (ratio) and direction) as some part of a creature (make it clear which part of the creature is the vector) - you may define the units (i.e. inches, feet, etc.)

3) 2D transform matrices ($\mathbf{3 0} \mathbf{p t s}$)

Given the following 2D transform matrices:

$$
m_{0}=\left[\begin{array}{ccc}
.707 & .707 & 0 \\
.707 & .707 & 0 \\
0 & 0 & 1
\end{array}\right] m_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] m_{2}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] m_{3}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

a) Name what type of 2D transformation is associated with each matrix and say something about the magnitude of the transform for x or y . ($\mathbf{4} \mathbf{p t s}$ total) m0:
m1:
m2:
m3:
b) If these are 2D transforms, why are they 3×3 matrices? (Write 1-2 sentences) ($\mathbf{2} \mathbf{~ p t s}$)
c) Carefully compute $\mathrm{m} 0^{*} \mathrm{~m} 2$ (that is write out the composite matrix) (4 pts):
d))(13 pts total)
(4 pts) Draw the result of applying the composite matrix (from part (c) - i.e. $\mathrm{m} 0^{*} \mathrm{~m} 2$) to the following figure (draw the entire house transformed). ($3 \mathrm{pts} \mathrm{each)} \mathrm{Include}$ coordinate labels for your completed drawing for the updated points $\{0,2\},\{1,3\}$ and $\{\mathbf{2}, \mathbf{2}\}$ (Be careful about how you represent the 2D points as vectors of length 3

(3 pts) $\{0,2\}$:
(3 pts) $\{1,3\}$:
(3 pts) $\{2,2\}$:
e) Now, only draw the result of applying two transforms: m1*m3 to the same figure (feel free to compute the composite matrix if that helps you, but it is not required). Be sure that your drawing includes a representation of the axes to clarify the house' exact final position: (7 pts)

4) Transforms ($\mathbf{1 5} \mathbf{~ p t s)}$

Assuming you have the following functions:
mat4 scale(float sx, float sy, float sz) \{... \} : returns a scale matrix
mat4 rotate(float angle, float ax, float ay, float ax) \{...\} : returns a rotation matrix by the given angle and axis [ax, ay, az]
mat4 translate(float tx, float ty, float tz) \{...\} : returns a translation matrix
And assume the operator * is defined for matrix multiplication as expected
Carefully draw the result of the following OpenGL/GLSL code assuming that the DrawRobotFace() function draws the complete image below (i.e. one grey box with sides of length 2 with three small sub-boxes inside with sides of length 0.5 : white eyes and a black mouth). Recall that rotations are specified as counter-clockwise. Carefully read all the code below before drawing and be sure that it is clear what the final drawing will look like (a mat4 is a GLSL/glm 4 x 4 matrix - as expected):


```
/*Set up the first matrix */
mat4 Scale = scale(2, 1, 1);
mat4 Trans = translate( -2, 0, 0);
mat4 Rot = rotate( -45, 0, 0, 1);
mat4 Model = Trans*Rot*Scale;
/*send matrix to the vertex shader */
glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, Model);
/* Draw */
DrawRobotFace ();
/*Set up the second matrix */
mat4 Scale = scale( 1, 1, 1);
mat4 Trans = translate( 1, 1, 0);
mat4 Rot = rotate( 45, 0, 0, 1);
mat4 Model = Trans*Rot*Scale;
/*send matrix to the vertex shader */
glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, Model);
/* Draw */
DrawRobotFace ();
```

Complete your drawing on the next page

5) More Transforms ($\mathbf{2 0} \mathbf{~ p t s}$) - please write neatly

Assuming that the DrawDragon() function draws the image below, that by default draws in a bounding box that ranges from a lower left corner of $\{1,1\}$ and extends to an upper right corner of $\{2,2\}$. Recall that rotations are specified as counter-clockwise. Write transform code, using a similar coding convention to what is used in question 4 that will result an animated scene (assume your code is within a loop - no need to write the loop). The scene should include two dragons centered at $\{-1,0\}$ and $\{1,0\}$ each facing away from one another and each spinning around its center (the one on the right in a clockwise direction, with the one on the left spinning in a counter clockwise direction). Example frames from an implementation are included below for clarity.

Default draw position of the DrawDragon() - carefully note the dragon's default position in space:

$\{1,1\}$

Write any initialization code here:

Write looped code here:

6) Rasterization (10 pts total):

If you have a triangle converted to window coordinates with the following coordinates, (including depths and colors) - given the associated Barycentric coordinates (ie do not compute them, use what is given):

$$
\begin{aligned}
& \{x, y, z\}=? \\
& \{\alpha, \beta, \gamma\}= \\
& \{0.2,0.2,0.6\}
\end{aligned}
$$

a) (3 pts) What are the coordinates for the associated interpolated vertex?:

b) (3 pts) What is the interpolated color?:
d) (4 pts) Assuming the current value stored in the depth buffer/z-buffer for the associated pixel is 5.5 , would the frame buffer/color buffer be updated with the new color? Assuming the z values specified are distances measured from the camera thus smaller values are closer to the camera.

