
CSC 471 midterm 1 – Spring 2017

Name:___

READ ME FIRST

• Work individually! You may use a calculator

• Don’t spend too much time on any one problem. This exam should take 80

minutes.

• Be neat

• Show how you got your answers!

• When in doubt, write down your assumptions
• You are allowed to use a calculator

1 15 pts Short answer

2 10 pts Vectors

extra

credit

2 pts

3 30 pts 2D transform matrices

4 15 pts Transforms

5 20 pts More Transforms

6 10 pts Rasterization

 100 pts Grand total

1) Short answer/ true & false questions (20 pts)

a) (1 pt) In a very general sense, the GPU can be viewed as a SIMD machine that

allows a program to run the same ‘vertex shader’ program on multiple different

vertices in parallel and then run a ‘fragment shader’ program on multiple

fragments in parallel, thus speeding up the process of rendering computer

graphics

True False

(b-f) Refer to the following figure and fill in the missing information – short

answers (2 pts each):

(b) Describe what data is typically

transferred from the CPU to the GPU

for graphics applications:

c) Describe what computational task a

vertex shader typically does?

d) Describe in your own words, what

happens during rasterization:

e) Describe what computational task a

fragment shader typically does?

f) What are the value ranges of the

geometry data at the end of the

graphic’s pipeline, i.e. {x, y}?

g) (4 pts) Assume in your game the circle defined by:

f (x, y) = (x- xc)
2 + (y- yc)

2 - r2

with {xc, yc} = {-1, 5} and a radius of 2.5, is shielded from the highly contagious

zombie virus. If you place your trusty steed at point {1, 6} are they safe from

contamination? (show your work with math):

2) Vectors (10 pts)

Given the following vectors: vT =[7, 9, 3] and uT = [7, 11, 3] Compute:

1) (2 pts) v+u=

2) (2 pts) vu=

3) (2 pts) If w = v–u, What is the length of the vector w?

4) (4 pts) Write the normalized form of w (from the part 3) (i.e. write w as a unit

length vector).

5) (2 pt extra credit): draw the vector -1*w (accurately depicting length (ratio) and

direction) as some part of a creature (make it clear which part of the creature is

the vector) – you may define the units (i.e. inches, feet, etc.)

3) 2D transform matrices (30 pts)

Given the following 2D transform matrices:

m0 =

.707 -.707 0

.707 .707 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

m1 =

1 0 0

0 -1 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

m2 =

1 0 1

0 1 -2

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

m3 =

2 0 0

0 3 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

a) Name what type of 2D transformation is associated with each matrix and say

something about the magnitude of the transform for x or y. (4 pts total)

m0:

m1:

m2:

m3:

b) If these are 2D transforms, why are they 3x3 matrices? (Write 1-2 sentences) (2 pts)

c) Carefully compute m0*m2 (that is write out the composite matrix) (4 pts):

d))(13 pts total)

 (4 pts) Draw the result of applying the composite matrix (from part (c) – i.e. m0*m2) to

the following figure (draw the entire house transformed). (3 pts each) Include

coordinate labels for your completed drawing for the updated points {0, 2}, {1, 3}

and {2, 2} (Be careful about how you represent the 2D points as vectors of length 3

(3 pts) {0, 2} :

(3 pts) {1, 3} :

(3 pts) {2, 2} :

(1, 3)

(2, 2) (0, 2)

(2, 0)

e) Now, only draw the result of applying two transforms: m1*m3 to the same figure (feel

free to compute the composite matrix if that helps you, but it is not required). Be sure

that your drawing includes a representation of the axes to clarify the house’ exact final

position: (7 pts)

4) Transforms (15 pts)

Assuming you have the following functions:

mat4 scale(float sx, float sy, float sz) {… } : returns a scale matrix

mat4 rotate(float angle, float ax, float ay, float ax) {…} : returns a rotation matrix by the

given angle and axis [ax, ay, az]

mat4 translate(float tx, float ty, float tz) {…} : returns a translation matrix

And assume the operator * is defined for matrix multiplication as expected

Carefully draw the result of the following OpenGL/GLSL code assuming that the

DrawRobotFace() function draws the complete image below (i.e. one grey box with sides

of length 2 with three small sub-boxes inside with sides of length 0.5: white eyes and a

black mouth). Recall that rotations are specified as counter-clockwise. Carefully read

all the code below before drawing and be sure that it is clear what the final drawing will

look like (a mat4 is a GLSL/glm 4x4 matrix – as expected):

Complete your drawing on the next page

/*Set up the first matrix */
mat4 Scale = scale(2, 1, 1);
mat4 Trans = translate(-2, 0, 0);
 mat4 Rot = rotate(-45, 0, 0, 1);
mat4 Model = Trans*Rot*Scale;
/*send matrix to the vertex shader */
glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, Model);
 /* Draw */
 DrawRobotFace ();

/*Set up the second matrix */
mat4 Scale = scale(1, 1, 1);
mat4 Trans = translate(1, 1, 0);
 mat4 Rot = rotate(45, 0, 0, 1);
 mat4 Model = Trans*Rot*Scale;
/*send matrix to the vertex shader */
glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, Model);
/* Draw */
DrawRobotFace ();

(1.0,1.0,0.0)

(-1.0,-1.0,0.0)

5) More Transforms (20 pts) – please write neatly

Assuming that the DrawDragon() function draws the image below, that by default draws

in a bounding box that ranges from a lower left corner of {1,1} and extends to an upper

right corner of {2,2}. Recall that rotations are specified as counter-clockwise. Write

transform code, using a similar coding convention to what is used in question 4 that

will result an animated scene (assume your code is within a loop – no need to write

the loop). The scene should include two dragons centered at {-1, 0} and {1, 0} each

facing away from one another and each spinning around its center (the one on the right

in a clockwise direction, with the one on the left spinning in a counter clockwise

direction). Example frames from an implementation are included below for clarity.

Default draw position of the DrawDragon() – carefully note the dragon’s default

position in space:

 {1, 1}

1) The start of the scene – note the white

lines represent the x and y axis

2) As time proceeds both dragons rotate in

opposite directions (around their own

center)

3) And continues to rotate 4) And continues to rotate…

Write any initialization code here:

Write looped code here:

6) Rasterization (10 pts total):

If you have a triangle converted to window coordinates with the following coordinates,

(including depths and colors) – given the associated Barycentric coordinates (ie do not

compute them, use what is given):

a) (3 pts) What are the coordinates for the associated

interpolated vertex?:

b) (3 pts) What is the interpolated color?:

d) (4 pts) Assuming the current value stored in the depth buffer/z-buffer for the

associated pixel is 5.5, would the frame buffer/color buffer be updated with the new

color? Assuming the z values specified are distances measured from the camera –

thus smaller values are closer to the camera.

{x,y, depth} = {215, 69, 3}

{r, g, b} = {0, 0, 1}

{x,y, depth} = {243, 42, 6}

{r, g, b} = {0, 0, 1}

{x,y, depth} = {102, 13, 6}

{r, g, b} = {0, 0, 1}

{x, y, z} = ?

{, , }=

{0.2, 0.2, 0.6}

