CSC 471 midterm 1 - Winter 2017

Name: \qquad

READ ME FIRST

- Work individually! You may reference your course notes and use a calculator
- Don't spend too much time on any one problem. This exam should take 80 minutes.
- Be neat
- Show how you got your answers!
- When in doubt, write down your assumptions
- You are allowed to use a calculator

1	20 pts	Short answer	
2	10 pts	Vectors	
extra credit	2 pts		
3	30 pts	2 D transform matrices	
4	15 pts	Transforms	
5	15 pts	More Transforms	
6	10 pts	Rasterization	
	100 pts	Grand total	

Short answer/ true \& false questions (20 pts)

a) (1 pt) In a very general sense, the GPU can be viewed as a SIMD machine that allows a program to run the same 'vertex shader' program on multiple different vertices in parallel and then run a 'fragment shader' program on multiple fragments in parallel, thus speeding up the process of rendering computer graphics

True
 False

(b-f) Refer to the following figure and fill in the missing information - short answers (2 pts each):

g) (9 pts) If you wanted the iris of a CG creatures eyeball to track the mouse movement (i.e. appear to follow where the user currently has the mouse located), but always draw inside the creatures eye, which is defined by a sphere with the following equation:
$f(x, y)=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}+\left(z-z_{c}\right)^{2}-r^{2}$
with $\{\mathrm{xc}, \mathrm{yc}, \mathrm{zc}\}=\{-1,3,1\}$ and a radius of 3 , what should the iris' $\{\mathrm{ix}, \mathrm{iy}, \mathrm{iz}\}$
location be (for an iris of radius 1), if you are given mouse coordinates transformed into world coordinates as follows: $\{\mathrm{mx}, \mathrm{my}\}=\{5,2\}$ - assume the z value should be the same as the eye's z values? (show your work with math) $\{\mathrm{ix}, \mathrm{iy}, \mathrm{iz}\}=$

2) Vectors (10 pts)

Given the following vectors: $\mathbf{v}^{\mathrm{T}}=[7,-6,5]$ and $\mathbf{u}^{\mathrm{T}}=[-1,-2,5]$
Compute:

1) $(\mathbf{2} \boldsymbol{p t s}) \mathbf{v}+\mathbf{u}$
2) $(\mathbf{2} \mathbf{p t s}) \mathbf{v} \cdot \mathbf{u}$
3) $\mathbf{(2} \mathbf{p t s})$ If $\mathbf{w}=\mathbf{v}+\mathbf{u}$, What is the length of the vector \mathbf{w} ?
4) (4 pts) Write the normalized form of \mathbf{w} (from the part 3) (i.e. write \mathbf{w} as a unit length vector).
5) (2 pt extra credit): draw the vector \mathbf{w} (accurately depicting length (ratio) and direction) as some part of a creature (make it clear which part of the creature is the vector) - you may define the units (i.e. inches, feet, etc.)
6) 2D transform matrices (30 pts)

Given the following 2D transform matrices:

$$
m_{0}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] m_{1}=\left[\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] m_{2}=\left[\begin{array}{ccc}
.707 & -.707 & 0 \\
.707 & .707 & 0 \\
0 & 0 & 1
\end{array}\right] m_{3}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

a) Name what type of 2D transformation is associated with each matrix and say something about the magnitude of the transform for x or y . ($\mathbf{4} \mathbf{~ p t s}$ total) m0:
m1:
m2:
m3:
b) If these are 2D transforms, why are they 3×3 matrices? (Write 1-2 sentences) ($\mathbf{2} \mathbf{~ p t s}$)
c) Carefully compute $\mathrm{m} 3^{*} \mathrm{~m} 1$ (that is write out the composite matrix) (4 pts):
d))(13 pts total)
(4 pts) Draw the result of applying the composite matrix (from part (c) - i.e. $\mathrm{m} 3 * \mathrm{ml}$) to the following figure (draw the entire house transformed). (3 pts each) Include coordinate labels for your completed drawing for the updated points $\{0,2\},\{1,3\}$
and $\{\mathbf{2 , 2} \mathbf{2}$ (Be careful about how you represent the 2D points as vectors of length 3

(3 pts) $\{0,2\}$:
(3 pts) $\{1,3\}$:
(3 pts) $\{2,2\}$:
e) Now, only draw the result of applying three transforms: $\mathrm{m} 1 * \mathrm{~m} 0$ to the same figure (feel free to compute the composite matrix if that helps you, but it is not required). Be sure that your drawing includes a representation of the axes to clarify the house' exact final position: ($\mathbf{7} \mathbf{~ p t s)}$

4) Transforms ($\mathbf{1 5} \mathbf{~ p t s)}$

Assuming you have the following functions:
mat4 scale(float sx, float sy, float sz) \{... \} : returns a scale matrix
mat4 rotate(float angle, float ax, float ay, float ax) \{...\} : returns a rotation matrix by the given angle and axis [ax, ay, az]
mat4 translate(float tx, float ty, float tz) \{...\} : returns a translation matrix
And assume the operator ${ }^{*}$ is defined for matrix multiplication as expected
Carefully draw the result of the following OpenGL/GLSL code assuming that the DrawRobotFace() function draws the complete image below (i.e. one grey box with sides of length 2 with three small sub-boxes inside with sides of length 0.5 : white eyes and a black mouth). Recall that rotations are specified as counter-clockwise. Carefully read all the code below before drawing and be sure that it is clear what the final drawing will look like (a mat4 is a GLSL/glm 4x4 matrix - as expected):


```
/*Set up the first matrix */
mat4 Scale = scale(2, 1, 1);
mat4 Trans = translate( 1, 1, 0);
mat4 Rot = rotate( -90, 0, 0, 1);
mat4 Model = Scale*Rot*Trans;
/*send matrix to the vertex shader */
glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, Model);
/* Draw */
DrawRobotFace ();
/*Set up the second matrix */
mat4 Scale = scale( 1, 2, 1);
mat4 Trans = translate( 0, 2, 0);
mat4 Rot = rotate( 45, 0, 0, 1);
mat4 Model = Trans*Rot*Scale;
/*send matrix to the vertex shader */
glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, Model);
/* Draw */
```

Complete your drawing on the next page

4) More Transforms ($\mathbf{1 5} \mathbf{p t s}$)

Given the following code snippet, that creates a hierarchical model for a robot chest and one arm with lower and upper arm portions (3 shapes total, using drawing primitives exactly like what you used for lab 6 - i.e. a cube that spans $\{-1,-1,-1\}$ to $\{1,1,1\}$ and the matrix stack provided with lab 6). Correctly draw the current position of the chest and arm (both upper and lower portions) - Complete your drawing on the next page

```
MV->pushMatrix();
    MV->loadIdentity();
    MV->translate(Vector3f(0, 0, -5));
    MV->scale(Vector3f(0.75, 0.75, 0.75));
    glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, MV);
    shape->draw(prog);
    MV->pushMatrix();
            MV->translate(Vector3f(-1, 1, 0));
            MV->rotate(90, Vector3f(0, 0, 1));
            MV->translate(Vector3f(-.75, 0, 0));
            MV->pushMatrix();
                    MV->translate(Vector3f(-.75, 0, 0));
                    MV->rotate(-45, Vector3f(0, 0, 1));
                    MV->translate(Vector3f(-.75, 0, 0));
                    MV->scale(Vector3f(0.75, 0.25, 0.25));
                    glUniformMatrix4fv(MV, 1, GL_FALSE, MV); //pseudo code
                    shape->draw(prog);
            MV->popMatrix();
            MV->scale(Vector3f(0.75, 0.25, 0.25));
            glUniformMatrix4fv(prog->getUniform("MV"), 1, GL_FALSE, MV);
            shape->draw(prog);
        MV->popMatrix();
MV->popMatrix();
```


5) Rasterization (10 pts total):

If you have a triangle converted to window coordinates with the following coordinates, (including depths and colors) - given the associated Barycentric coordinates (ie do not compute them, use what is given):

$$
\begin{aligned}
& \{\mathrm{x}, \mathrm{y}, \mathrm{z}\}=? \\
& \{\alpha, \beta, \gamma\}= \\
& \{0.2,0.0,0.8\}
\end{aligned}
$$

a) (3 pts) What are the coordinates for the associated interpolated vertex?:

$$
\begin{aligned}
& \{x, y, \text { depth }\}=\{214,69,4\} \\
& \{r, g, b\}=\{0,0,1\}
\end{aligned}
$$

b) (3 pts) What is the interpolated color?:

$$
\{x, y, \text { depth }\}=\{104,14,5\}
$$

$$
\{\mathrm{r}, \mathrm{~g}, \mathrm{~b}\}=\{1,0,0\}
$$

d) (4 pts) Assuming the current value stored in the depth buffer/z-buffer for the associated pixel is 4.3 , would the frame buffer/color buffer be updated with the new color? Assuming the \mathbf{z} values specified are distances measured from the camera thus smaller values are closer to the camera.

