CSC 471 midterm 2 HOME WORK DUE in class 3/8

1) Geometric Relationships

Assume that Emmet (the main character in the Lego movie) can throw a brick anywhere within 5 units away from his body. Assume the character, Lord Business is currently located at $\{1, 2, 1\}$ and Emmet is located at $\{-2, -1, 0\}$

(a) Can Emmet hit Lord Business with a brick? SHOW YOUR WORK MATHEMATICALLY!

(b) Now assume there is an extremely large wall (much like a plane) (specified by the equation: 6*x+8*y+0*z+5=0). And there is a zombie located at {1, 0, 10}. Which character can the zombie eat first – assuming the zombie cannot get across the wall? SHOW YOUR WORK MATHEMATICALLY!
<hint: a plane divides 3D space into a positive half space and a negative half space – you can tell if a point is on the same "side" of a plane by plugging in the point to the equation and seeing if its value is negative or positive – if two points are positive, those 2 points lay on the same "side" of the plane>

2) Transforms

Carefully draw the result of the following OpenGL (and MatrixStack) code assuming that the DrawRobotFace() function draws the complete image below (i.e. one grey box with sides of length 2 with three small sub-boxes inside with sides of length 0.5: white eyes and a black mouth). Recall that rotations are specified as counter-clockwise. <u>Carefully</u> read all the code below before drawing and be sure that it is clear what the final drawing will look like:

3) Shading

Given a light with the following $\{r, g, b\}$ ambient, diffuse and specular terms: light_color= $\{1, 1, 1\}$

and a material with the following ambient, diffuse and specular terms:

material_diffuse = $\{0.6, 0.6, 0.8\}$

material_ambient = $\{0.2, 0.2, 0.2\}$

material _specular= $\{0.0, 0.5, 0.5\}$

material_shininess={2}

Assuming that the light is **located at is {10, 10, 4}**. For a **point located at {10, 0, 4}** with the normal is {0, 8, 6} and the **camera is located at** {10, 3, 8}, what is the reflected color {r, g, b}, computed using the Phong model? (Assume there is no distance attenuation). Show your work!

4) Camera transforms

Given the below world frame figure (with coordinates listed for the center of the objects) – and a camera specified using LookAt(1, 4, 2, 1.0, 1.0, 2.0, -1, 0, 0).

- a. **Draw** the camera (and its frame, i.e. **u**, **v**, **w** basis vectors) in the below world frame and clearly specify what it is looking at, the star or the moon?
- **b.** Compute and draw the gaze vector. **Gaze** =
- **c.** If you wanted to 'zoom' out the camera, one unit along the gaze vector, what is the value of the new 'eye' position of the camera?
- **d.** Why is the "up" vector different then our usual $\{0, 1, 0\}$ vector?

