CSC 471-01	Name:
Fall 2017	Midterm 2
12/1/2017	Time Limit: 50 Minutes

This exam contains 8 pages (including this cover page) and 4 questions. Total of points is 60.

• Don't spend too much time on any one problem.

This exam should take approximately 50 minutes.

- Note that the amount of points may vary per question.
- Be neat.
- Show how you got your answers! Answers with no work will receive zero points.
- Write down your assumptions.
- Access to one sheet of hand-written notes and a calculator is allowed.
 Regardless of whether you have a calculator, you must write the arithmetic expression which produces the answer.

Feel free to leave unsimplified fractions and square roots in your answer.

• If multiple answers are given to a question, I will grade the lower-rightmost one.

Grade Table

Question	Points	Score
Graphics Pipeline (short answer)	20	
Shading	20	
Camera Transforms	20	
Extra Credit	0	
Total:	60	

1. 20 points Graphics Pipeline (short answer)

Please answer the following multiple-choice questions about the graphics pipeline:

(a)	2 points Specular shading should change as you move your camera around to look at the (specularly reflected) object from different angles.
	○ True
	○ False
(b)	2 points In Gouraud shading, normals are interpolated across rasterized primitives so that lighting can be computed on a per-fragment basis. True False
(c)	2 points In deferred shading, transparent objects are easier to render but not as
	many light sources can be used.
	○ True
	○ False
(d)	2 points The contents of a renderbuffer can be attached to a framebuffer but not accessed from a shader. True False
(e)	2 points Using orthographic projection, the z-buffer is not necessary because objects appear the same 'depth' regardless of where they are in the scene. \(\triangle \) True \(\triangle \) False
(f)	2 points If a framebuffer is bound while drawing an object that is textured with one of the framebuffer's attachments, simultaneously reading and writing to that framebuffer is possible. True False

(g)	2 points	The model matrix is used to transform coordinates from object space
	into worl	d space.
		True
	\bigcirc	False
(h)	2 points	Given a texture with a different color per texel, when mapped onto a
	sphere, se	ome fragments of the sphere may share the same color.
	\bigcirc	True
	\bigcirc	False
(i)	4 points	Given an application defined geometric object (say a tree) that is spec-

- (1) 4 points Given an application defined geometric object (say a tree) that is specified in world coordinates as being 2 units tall and is 10 units away from the camera and a view plane that is 1 units away from the camera, how tall will the tree be using perspective projection:
 - A. 0.4 unit
 - B. 0.2 unit
 - C. 5.0 unit
 - D. not enough information to determine

2. 20 points Shading

Given a light with the following $\{r, g, b\}$ ambient, diffuse and specular terms:

```
light\_color = \{1, 1, 1\}
```

and a material with the following ambient, diffuse and specular terms:

```
\label{eq:material_ambient} \begin{split} \text{material\_ambient} &= \left\{0.1, 0.1, 0.1\right\} \\ \text{material\_diffuse} &= \left\{0.6, 0.6, 0.8\right\} \\ \text{material\_specular} &= \left\{0.4, 0.4, 0.0\right\} \\ \text{material\_shininess} &= \left\{2\right\} \end{split}
```

For a point located at $\{3,5,10\}$ with the normal is $\{1,2,2\}$ and the camera is located at $\{4,9,18\}$, and assuming that the light is located at is $\{7,1,3\}$, what is the reflected color $\{r,g,b\}$, computed using the Blinn-Phong model (i.e. use the half vector H, not the computation involving V and R for the specular)?

(Assume there is no distance attenuation).

Show your work!

Extra space for work/answer.

3. 20 points Camera Transforms

Given the following glm call:

LookAt(vec3(4, 0, 3), vec3(3, 4, 11), vec3(0, 1, 0))

where the function prototype is:

LookAt(eye, target, up)

(a) 6 points What are the $\{u, v, w\}$ (camera basis vectors) for this setting?

(b) 4 points What is the camera transform (please write it as two matrices, the translation and rotation, not as a single composite matrix):

Recall that:

$$\begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(c) 6 points What are the coordinates of the point in the world $\{0,0,-2\}$ in the camera space?

(d) 4 points If you had WASD keys enabled, and the user hit the d key and wanted to move forward (one unit), what are the updated values sent to the lookat function? (Assume you move one unit each key stroke - be specific)

4. 5 points (bonus) Draw terrain or a landscape scene (1 - 5pts).